News APP

NewsApp (Free)

Read news as it happens
Download NewsApp  » News » This missile is India's answer to the Pakistan Navy

This missile is India's answer to the Pakistan Navy

By Ajai Shukla
December 02, 2015 10:02 IST
Get Rediff News in your Inbox:

The Long Range Surface to Air Missile jointly being developed by India and Israel is an answer to potential threats from Pakistan’s anti-ship missile, reports Ajai Shukla.


A successful missile test last Thursday, in the Mediterranean Sea off the Israeli port of Haifa, is potentially a giant capability leap for Indian and Israeli warships.

Developed jointly by both countries, Israelis refer to the new missile system as the Barak 8, while Indians call it the Long Range Surface to Air Missile. It protects warships from the weapon that their captains most fear: anti-ship missiles, launched from submarines, ships or aircraft up to 150 kilometre away.

A modern, anti-ship missile like the Harpoon II, which costs less than $2 million (Rs 13.3 crore), can scuttle a warship worth several hundred million dollars.

The Indian Navy’s answer to this is the LR-SAM, which has been described as “an anti-aircraft, anti-missile missile”. Its origins lie in the Kargil crisis of 1999, when the navy realised its vulnerability to the Harpoon anti-ship missiles that America had supplied to the otherwise outgunned Pakistan Navy.

To counter the Harpoon, New Delhi approached Tel Aviv for an emergency procurement of its newly developed Barak missiles, which could shoot down incoming Harpoons at a range of ten kilometres.

While impressed with the Barak, the admirals wanted longer-range protection, given the navy’s “blue water” ambitions of controlling wide swathes of ocean. Operating as a part of a widely dispersed flotilla, a capital warship (destroyer, frigate or corvette) needed to not just protect itself but to also create a protective “air defence bubble” for smaller accompanying warships.

In January 2006, New Delhi and Tel Aviv agreed to develop a longer-range Barak that could counter anti-ship missiles of the future. New Delhi allocated Rs 2,606 crore to this project, which would enhance engagement ranges seven-fold, to 70 kilometres. Enemy fighter aircraft, which presented significantly larger targets than anti-ship missiles, could be detected and destroyed at longer ranges.

It was agreed that India’s Defence R&D Organisation would develop the missile’s solid-fuel, two-pulse propulsion motors -- 30 per cent of the work share-- while Israel Aerospace Industries would build the rest of the LR-SAM.

Of this, Rs 1,700 crore were for three LR-SAM systems for the new Kolkata-class destroyers that India was building. Meanwhile, Israel planned to fit three systems on its Sa’ar 5 corvettes, its biggest and most advanced warships.

It was one of these corvettes, the Israeli Naval Ship Lahav, which conducted the test on Thursday. This was the first time the LR-SAM was tested on a warship, fully deployed in “combat configuration”. The anti-ship missile was simulated by a “pilotless target aircraft” that was racing towards the ship at 500-550 kilometres per hour. This is slower than the Harpoon anti-ship missile which travels at about 865 kmph, and barely half the 1,150 kmph speed of the Exocet anti-ship missile.

A senior defence ministry official described the test. As the pilotless target aircraft flew toward the Lahav, the corvette’s MF-STAR radar, the heart of the LR-SAM system, quickly detected it. The MF-STAR (multi-function surveillance, tracking and acquisition radar) can detect targets up to 200 kilometres away, but the actual range at which this test was conducted remains secret.

How it unfolded

Strategic affairs website DefenseNews quoted an Israeli official telling reporters that the target was acquired “at a range of more than 20 kilometres but less than 120 kilometres.”

Automatically, the MF-STAR began tracking the target, displaying in real time its distance, altitude, direction and velocity on a multi-function display in the ship’s operations room -- on the LR-SAM’s command system.

Meanwhile, an interceptor missile, housed in a canister in the warship, began its pre-launch checks. Within seconds, the LR-SAM’s command system had computed engagement scenarios and calculated the impact point, where the outgoing missile would meet and destroy the incoming aircraft -- a bullet hitting a bullet.


At the designated nanosecond, the interceptor missile roared out of its canister, engulfing the Lahav’s deck in a ball of fire. Quickly gaining supersonic speed, it levelled out and streaked towards the incoming missile, guided by continuous target updates transmitted by the MF-STAR over a data link.

Seven kilometres short of the target, a seeker on-board the missile switched on; now the missile was itself locked onto the target, tracking its manoeuvres. The dual-pulse motor fired again, accelerating the missile that was, by now, merely “coasting”. This increased velocity allowed the missile to manoeuvre sharply, keeping up with the target’s evasive zigzags -- termed “target dynamics”.

As the interceptor arrived a few metres from the target, a proximity fuse detonated its 23-kilo high-explosive warhead. This aims to destroy the target or damage it enough to prevent it reaching the mother warship. In Thursday’s test, the Israelis claim the proximity fuse was irrelevant, since the interceptor missile directly hit the simulated target. “It was metal on metal,” says an Israeli source.

“All the subsystems of the missile performed as predicted and achieved the desired goal of hitting the incoming target,” an Indian defence ministry statement corroborated on Friday.

The next step

The ministry says the next test will involve the LR-SAM being fired from INS Kolkata. After it is validated in at least three tests, the LR-SAM will be deployed in all the three Kolkata-class destroyers (Project 15-A); four Project 15-B destroyers being constructed in Mazagon Docks; and seven frigates that will soon begin construction in Mazagon and Garden Reach Shipbuilders & Engineers, Kolkata. The LR-SAM will also be installed on INS Vikrant, the indigenous aircraft carrier being built in Kochi.

The Israeli navy, meanwhile, will install the Barak 8 on all three of its Sa’ar 5 corvettes, and four new Sa’ar 6 corvettes that are being built in Germany.

Senior DRDO sources describe working with the Israelis in developing the LR-SAM as “a lesson in professionalism and capable project management”. The LR-SAM, which was to be operationalised in October 2012, is running three years late, but DRDO admits this is because of Indian delays in developing the dual-pulse motors, which required developing an entirely new propellant.

Meanwhile, the Indian Air Force, which faces a dire shortfall of capable missile systems to defend Indian airspace, is plugging this gap, courtesy the LR-SAM. In March 2009, it signed a Rs 10,075-crore contract with DRDO for a ground-based version called the Medium Range Surface to Air Missile.

The contract is for 18 fire units (each equipped with 24 missiles) to be delivered by October 2016. Each fire unit includes radar, three missile launchers, and a command system. “There is 90 per cent commonality between the LR-SAM and the MR-SAM. We are on track to conduct the first full MR-SAM test in the first half of 2016," says a senior DRDO official.

With development of this new generation missile almost complete, the production chain has begun to roll. The missiles are being integrated at state-owned Bharat Dynamics. Several private sector companies, such as Godrej & Boyce and SEC, are parts of the production chain.

“We are doing concurrent production, and have placed orders for sub-systems. A large part of the LR-SAM will be built in India, bringing down costs and increasing our capabilities,” says a DRDO official.

This missile production chain is assured of orders for at least the next two to three decades. A missile has a limited shelf life of seven to nine years and, as they complete their service lives and are consumed in training, replacement orders are guaranteed.

Get Rediff News in your Inbox:
Ajai Shukla
Source: source